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ABSTRACT fp"+ 
A Doppler shift toward the red is  found for the radiation from 

most members of an ensemble of relativistically moving emitters. 

would make it difficult to observe blue shifts from quasars i f  they are relatively 

This effect - 

nearby objects in highly relativistic motion. 



It is generally accepted that quasars a re  objects exhibiting gravi- 

tational or cosmological red shifts since no blue shifts a r e  observed. However, 

we wish to point out that even if quasars were nearby objects in highly relativis- 

tic motion, most would exhibit red shifts. 

analysis. 

This can be seen from the following 

Consider a number of objects emitting radiation which move in 

random directions at relativistic velocities. Two physical effects may be identi- I 
fied as producing a preferential Doppler shift to the red as compared to the violet: 

The transverse part of the Doppler effect and the effect of the Doppler shifts on 
~ 

the apparent lifetimes of the objects. The first effect may be found from the ~ 

formula (Jackson 1962) for the Doppler effect for light 

where w i s  the observed frequency, w is the emitted frequency, f3 = v/c, and 8 '  
0 

ii the angle between the velocity of source relative to the observer and the direc- 

tion of the emitted light in the observer's frame of reference. Since the objects 
1 

a r e  taken to have an isotropic velocity distribution in the observer's frame, their 

distribution of velocities with respect to 8 must be uniform over a l l  solid angles. 

Thus the number of objects aimed at angles between 8 '  and 8 '  t de '  will be 

Here 8 '  = 0 corresponds to approach. 
1 
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where the total number of objects is N . When f3 is near unity, the small  

factor ( 1 - Bz) z" in the numerator of Eq. (1) tends to produce red  shifts 

even for 8 rather than n /2. The case of 8 = n / 2  is  the well known trans- 

verse  Doppler effect, which may be understood as a time dilation effect. In 

0 1 

less 
4 

I .  

-1  will be used. 

jects will  be taken to have equal speeds and wil l  be presumed to be created in  

groups at random times, all the objects having intrinsic lifetimes that are equal 

or distributed randomly. The te rm 'rlntrinsic" here is in contrast to "observed, 

since the life of an object of redshift r will be multiplied by r when seen by the 

observer (Noerdlinger 1966). 

redshifted objects as compared to blue shifted ones. 

observed on the average wi l l  no longer be the time average of N , will be in- 

creased, since the average of r exceeds unity. This may be thought of as an 

average tendency of clocks on the emitting objects to run slower than ours, f rom 

our viewpoint. 

proceed to the calculation of precise results. 

Clearly p and p a re  the extreme values taken by r .  The ob- 

This introduces an additional preponderance of 

The total number of objects 

0 

Having discussed the qualitative features of the problem, we shall 

Solving Eq. (1) for cos €I1, one obtains 8 '  = (y - r ) / y  p, so that 

sin 8 '  de = (i/ Vp) dr (4) 
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Therefore, the distribution of emitters as  a function of r is 

where no allowance for the iifetime effect has been made. 

ance, one obtains 

With such an ailow- 

The expectation brackets a r e  used to  indicate that distribution ( 6 )  Is applicable 

in  a time-average sense. The lower and upper limits on r a r e  obviously the 

=/ 
values at 8 = 0 or TT , and a r e  respectively and 4 . The mean observed P 

? 
I 
' .  

t 

I 

numbers R of redshifted and B of blueshifted objects respectively a r e  found 

I 

B = f i N w ) >  dl- (7) R=J<A4rr>dr AHd 
l/p from 

I P 
The integrals a r e  done easily, wit5 the results 

The sum of these exceeds N , as predicted from the mean lifetime increase. 

the distribution (3) were used, as wmulcL be appropriate for emitters created a 

much shorter time ago than one standard intrinsic lifetime, the values 

If 
0 
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would be obtained instead. These add to No. 

The mean values of r for the two classes of emitters (R and B) 

may be found from 

The resulting values a r e  

It is interesting to note that in the highly relativistic limit ( f 3  + 1, y>>i), 
the mean blue shift tends to the value 2/3, whilst the mean red shift is asymp- 

totic to 2 3’2y/3 

on the mean blue shift seems to be that most of the blue shifted light comes 

from emitters near the C m e  of zero shift ( r = I ) ,  on account of the compara- 

tively large solid angle available there. 

, which is unbounded as  ‘f-co. The reason for the limit 

This bunching near r = 1 becomes 

more severe, the closer f3 

Of particular 

is to unity, with the result  that r 

interest is the fraction 

is bounded. B 

of objects seen to be blue shifted. If quasars a r e  to be interpreted as  objects 

at less than cosmological distances (Arp, 1966), one must understand why no 



. 
I -  
I .  
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blue shifts a r e  observed. 

of the  mean observed redshift F 

of emitters with a common origin only if  their lifetimes were broadly distribu- 

ted and we were observing them a t  times after creation roughly comparable to 

their mean lifetime. If detailed models a r e  proposed for the emitters, the 

lifetime information from such models would have to be used to modify the 

Values off a r e  shown in  Table 1 for various values 

This redshift would apply to single groups R' 

factor r inserted in Eq. ( 6 ) .  The qualitative effects would not vary much. The 

present calculations show a t  least that the observed redshifts could possibly be 

special relativistic Doppler shifts rather than being cosmological or gravitational. 

It is evident from the ent3ies in  Table 1 that when Ak/A 

only a tenth of the objects should show blue shifts. 

= z i s  of order unity, 
0 

For  completeness, we briefly consider the question of relative 

intensity. Although most of the objects will show red shifts, it  is  also true 

that the usual relativistic forward peaking of radiation occurs, enhancing the 

intensity of objects with smaller r (that is, objects aimed more nearly at the 

observer). Assume that the emission of an object is isotropic in its r e s t  f rame,  

s o  that 

is the energy flux emitted at angles between 8 and 8 + d e ,  with respect to the 

velocity of the object and per unit bandwidth at frequency f . 
the radiation at  frequency f /r = f ' ,  and at the angle 8 

The observer sees 
0 

related to 8 by 
0 
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(Jackson, 1962). Making use of Eqs. ( i I S  (41, and the relation E= Wfor 

photons, whose number must be conserved under any transformation, one 

eventually obtains 

a s  the observed energy flux in the solid angle between 8 

the band of frequencies between f '  and f '  + df'. 
and 8 + de I and in 

If averaged over a distribution 

(Eq. 6) of nearby emitters, Eq. (15) leads to the conclusion that more energy 

is received from the relatively few blue-shifted objects. So long as  none of the 

reddened objects falls below the threshold of intensity required for observation; 

however, the conclusions a s  to the relative number of red  and blue-shifted ob- 

jects a r e  unchanged by intensity considerations. If some objects a r e  so dis- 

tant that they fall below the threshold of observation, these conclusions must 

be modified, since the red-shifted ones will  fall below threshold first. A t  

sufficiently large distances, however, cosmological redshifts will become im- 

por tant. 

This research has been supported, in  part, by the National Aero- 

nautics and Space Administration under grants NASA-NsG 96-60 (P. D. N. ) and 

NASA-NsG 479-61 ( J. R. J.). 
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TABLE I 

THE FRACTION OF RED-SHIFTED OBJECTS VS. THEIR ,MEAN REDS)TZFT 

f 
L 

0.500 1.00 1.00 0.00 

0.475 1.04 0.9 0.053 

0.445 1.06 0.8 0.111 

0.375 1.15 0.6 0.250 

0.286 1.31 0.4 0.429 

0.231 1.46 0.3 0.538 

0.167 1.74 0.2 0.667 

0.136 1.91 0. 15 0.739 

0.091 2.27 0.1 0.819 

0.048 3.1 0.05 0.905 

0.0196 4.7 0.02 0.961 

0.01 6.74 0.01 0.990 

/ 



REFERENCES 

Arp, H. P 1966, Science 151, - iZ14 
Jackson, J. D. 1962, Classical Electrodynamics, John Wiley ,  New York 

Noerdlinger, P. D. 1966, Ap. J 143, - 1004. 


